Title: | Downloading and Processing Microdata from ECH-INE (Uruguay) |
---|---|
Description: | A consistent tool for downloading ECH data, processing them and generating new indicators: poverty, education, employment, etc. All data are downloaded from the official site of the National Institute of Statistics at <https://www.gub.uy/instituto-nacional-estadistica/datos-y-estadisticas/encuestas/encuesta-continua-hogares>. |
Authors: | Gabriela Mathieu [aut, cre, cph] , Richard Detomasi [aut] , Tati Micheletti [ctb] , Instituto Nacional de Estadistica, Uruguay (INE) [dtc] |
Maintainer: | Gabriela Mathieu <[email protected]> |
License: | GPL-3 |
Version: | 0.1.3 |
Built: | 2024-11-23 04:34:26 UTC |
Source: | https://github.com/calcita/ech |
This function allows you to calculate age groups
age_groups(data = ech::toy_ech_2018, cut = c(0, 4, 11, 17, 24), e27 = "e27")
age_groups(data = ech::toy_ech_2018, cut = c(0, 4, 11, 17, 24), e27 = "e27")
data |
data.frame |
cut |
breaks points to cut a numeric variable |
e27 |
Variable name of age |
data.frame
Other demographic:
household_type()
#' toy_ech_2018 <- age_groups(data = ech::toy_ech_2018, cut = c(0, 4, 11, 17, 24))
#' toy_ech_2018 <- age_groups(data = ech::toy_ech_2018, cut = c(0, 4, 11, 17, 24))
Extract compressed archives
archive_extract(archive.path = NULL, dest.path = NULL)
archive_extract(archive.path = NULL, dest.path = NULL)
archive.path |
Ruta de origen del archivo comprimido |
dest.path |
Ruta destino del archivo descomprimido |
Disclaimer: This script is not an official INE product. Aviso: El script no es un producto oficial de INE.
No return value, called for side effects
Other utils:
dates_ech()
,
ech
,
unlabelled()
,
unrarPath
This function allows you to get the Basket goods
basket_goods(data = ech::cba_cbna_mdeo, year = NULL)
basket_goods(data = ech::cba_cbna_mdeo, year = NULL)
data |
data.frame with the price of the basket of goods from Montevideo, Interior or Rural region |
year |
the ECH year |
Disclaimer: This script is not an official INE product. Aviso: El script no es un producto oficial de INE.
data.frame
Other income:
deflate()
,
income_constant_prices()
,
income_quantiles()
,
labor_income_per_capita()
,
labor_income_per_hour()
,
organize_ht11()
df <- basket_goods(data = ech::cba_cbna_mdeo, year = 2018)
df <- basket_goods(data = ech::cba_cbna_mdeo, year = 2018)
This function allows you to identify activity branches
branch_ciiu( data = ech::toy_ech_2018, f72_2 = "f72_2", group = TRUE, disaggregated = FALSE )
branch_ciiu( data = ech::toy_ech_2018, f72_2 = "f72_2", group = TRUE, disaggregated = FALSE )
data |
data.frame |
f72_2 |
Variable name of ciiu code rev.4 |
group |
logical to define 12 or 18 categories, if FALSE code 18. Default: TRUE |
disaggregated |
logical to define disaggregated branches or not. Default: FALSE |
Disclaimer: This script is not an official INE product. Aviso: El script no es un producto oficial de INE.
data.frame
Other employment:
employment_restrictions()
,
employment()
,
underemployment()
toy_ech_2018 <- branch_ciiu(data = ech::toy_ech_2018)
toy_ech_2018 <- branch_ciiu(data = ech::toy_ech_2018)
A dataset containing the CBA and CBNA for the Interior Urbano region
cba_cbna_int
cba_cbna_int
A data frame with 234 rows and 4 variables:
date from 2001 to 2020
CBA
CBNA
CBT
Disclaimer: This script is not an official INE product. Aviso: El script no es un producto oficial de INE.
https://www.gub.uy/instituto-nacional-estadistica/
Other dataset:
cba_cbna_mdeo
,
cba_cbna_rur
,
dic
,
ipab_base2010_int
,
ipab_base2010_mdeo
,
ipab_base2010
,
ipc_base2010_int
,
ipc_base2010_mdeo
,
ipc_base2010
,
toy_ech_2018_income
,
toy_ech_2018
,
urls_ine
A dataset containing the CBA and CBNA for the Montevideo region
cba_cbna_mdeo
cba_cbna_mdeo
A data frame with 234 rows and 4 variables:
date from 2001 to 2020
CBA
CBNA
CBT
Disclaimer: This script is not an official INE product. Aviso: El script no es un producto oficial de INE.
https://www.gub.uy/instituto-nacional-estadistica/
Other dataset:
cba_cbna_int
,
cba_cbna_rur
,
dic
,
ipab_base2010_int
,
ipab_base2010_mdeo
,
ipab_base2010
,
ipc_base2010_int
,
ipc_base2010_mdeo
,
ipc_base2010
,
toy_ech_2018_income
,
toy_ech_2018
,
urls_ine
A dataset containing the CBA and CBNA for the Interior Rural region
cba_cbna_rur
cba_cbna_rur
A data frame with 234 rows and 4 variables:
date from 2001 to 2020
CBA
CBNA
CBT
Disclaimer: This script is not an official INE product. Aviso: El script no es un producto oficial de INE.
https://www.gub.uy/instituto-nacional-estadistica/
Other dataset:
cba_cbna_int
,
cba_cbna_mdeo
,
dic
,
ipab_base2010_int
,
ipab_base2010_mdeo
,
ipab_base2010
,
ipc_base2010_int
,
ipc_base2010_mdeo
,
ipc_base2010
,
toy_ech_2018_income
,
toy_ech_2018
,
urls_ine
This function allows you to organize dates
dates_ech(data)
dates_ech(data)
data |
data frame with an 'yy' variable for the year, and a 'mm' variable for the month |
data.frame
Other utils:
archive_extract()
,
ech
,
unlabelled()
,
unrarPath
This function allows you to calculate a deflator coefficient
deflate( base_month = NULL, base_year = NULL, index = "IPC", level = "G", df_year = NULL )
deflate( base_month = NULL, base_year = NULL, index = "IPC", level = "G", df_year = NULL )
base_month |
baseline month |
base_year |
baseline year |
index |
IPC or IPAB |
level |
General index ('G'), Montevideo index ('M') or Interior index ('I') |
df_year |
ECH year |
Disclaimer: This script is not an official INE product. Aviso: El script no es un producto oficial de INE.
vector
Other income:
basket_goods()
,
income_constant_prices()
,
income_quantiles()
,
labor_income_per_capita()
,
labor_income_per_hour()
,
organize_ht11()
A dataset containing variables names change of the ECH 2006-2018
dic
dic
A data frame with 976 rows and 21 variables:
Code oh label
Description of label
Module in the form 2017
Observations
Level of variable household (H) individual (P) or general (G)
ECH variables names 2006
ECH variables names 2007
ECH variables names 2008
ECH variables names 2009
ECH variables names 2010
ECH variables names 2011
ECH variables names 2012
ECH variables names 2013
ECH variables names 2014
ECH variables names 2015
ECH variables names 2016
ECH variables names 2017
ECH variables names 2018
ECH variables names 2019
ECH variables names 2021 segundo semestre
ECH variables names 2022 primer semestre
...
Disclaimer: This script is not an official INE product. Aviso: El script no es un producto oficial de INE.
https://www.gub.uy/instituto-nacional-estadistica/
Other dataset:
cba_cbna_int
,
cba_cbna_mdeo
,
cba_cbna_rur
,
ipab_base2010_int
,
ipab_base2010_mdeo
,
ipab_base2010
,
ipc_base2010_int
,
ipc_base2010_mdeo
,
ipc_base2010
,
toy_ech_2018_income
,
toy_ech_2018
,
urls_ine
ech
packageToolbox for Downloading and Processing Microdata from the Continuous Household Survey of Uruguay (ECH)
See the README on Github
Other utils:
archive_extract()
,
dates_ech()
,
unlabelled()
,
unrarPath
This function allows you to calculate the variables: PEA, PET, PO, PD
employment(data = ech::toy_ech_2018, pobpcoac = "pobpcoac")
employment(data = ech::toy_ech_2018, pobpcoac = "pobpcoac")
data |
data.frame with microdata |
pobpcoac |
Variable name of definition of population by activity status. Default: "pobpcoac" |
Disclaimer: This script is not an official INE product. Aviso: El script no es un producto oficial de INE.
data.frame, tbl and tbl_df object
Other employment:
branch_ciiu()
,
employment_restrictions()
,
underemployment()
toy_ech_2018 <- employment(data = ech::toy_ech_2018, pobpcoac = "pobpcoac")
toy_ech_2018 <- employment(data = ech::toy_ech_2018, pobpcoac = "pobpcoac")
This function allows you to identify workers with employment restrictions
employment_restrictions( data = ech::toy_ech_2018, f82 = "f82", underemployment = "underemployment" )
employment_restrictions( data = ech::toy_ech_2018, f82 = "f82", underemployment = "underemployment" )
data |
data.frame |
f82 |
Variable name of contribution to the pension fund |
underemployment |
Variable name of underemployment |
Disclaimer: This script is not an official INE product. Aviso: El script no es un producto oficial de INE.
data.frame
Other employment:
branch_ciiu()
,
employment()
,
underemployment()
toy_ech_2018 <- underemployment(data = ech::toy_ech_2018) toy_ech_2018 <- employment_restrictions(data = toy_ech_2018)
toy_ech_2018 <- underemployment(data = ech::toy_ech_2018) toy_ech_2018 <- employment_restrictions(data = toy_ech_2018)
This function allows you to calculate the people enrolled in school
enrolled_school( data = ech::toy_ech_2018, e27 = "e27", e193 = "e193", e197 = "e197", e201 = "e201", e212 = "e212", e215 = "e215", e218 = "e218", e221 = "e221", e224 = "e224" )
enrolled_school( data = ech::toy_ech_2018, e27 = "e27", e193 = "e193", e197 = "e197", e201 = "e201", e212 = "e212", e215 = "e215", e218 = "e218", e221 = "e221", e224 = "e224" )
data |
data.frame with necessary variables Defaults to ech. |
e27 |
Variable name of age |
e193 |
Variable name of attendance school |
e197 |
Variable name of attendance primary |
e201 |
Variable name of attendance secondary |
e212 |
Variable name of attendance technical school (non-university) |
e215 |
Variable name of attendance magisterio |
e218 |
Variable name of attendance university |
e221 |
Variable name of attendance tertiary |
e224 |
Variable name of attendance postgrade |
Disclaimer: This script is not an official INE product. Aviso: El script no es un producto oficial de INE.
data.frame
Other education:
level_completion()
,
level_education()
,
organize_educ()
,
years_of_schooling()
toy_ech_2018 <- enrolled_school(data = ech::toy_ech_2018)
toy_ech_2018 <- enrolled_school(data = ech::toy_ech_2018)
This function allows you to estimate the Gini coefficient
get_estimation_gini( data = ech::toy_ech_2018, variable = NULL, by = NULL, level = NULL, ids = NULL, numero = "numero", estrato = NULL, pesoano = "pesoano", bootstrap = FALSE, r = NULL )
get_estimation_gini( data = ech::toy_ech_2018, variable = NULL, by = NULL, level = NULL, ids = NULL, numero = "numero", estrato = NULL, pesoano = "pesoano", bootstrap = FALSE, r = NULL )
data |
ech data frame |
variable |
Variable name of income without rental value per capita deflated |
by |
data frame column |
level |
is household ("h") or individual ("i"). |
ids |
Variable name of cluster |
numero |
Variable name of household id |
estrato |
Variable name of strata |
pesoano |
Variable name of weights |
bootstrap |
Logical value |
r |
A number of replicas |
Disclaimer: This script is not an official INE product. Aviso: El script no es un producto oficial de INE.
table
Other estimation:
get_estimation_gpg()
,
get_estimation_mean()
,
get_estimation_median()
,
get_estimation_qsr()
,
get_estimation_ratio()
,
get_estimation_total()
,
set_design()
toy_ech_2018 <- income_constant_prices(data = ech::toy_ech_2018, index = "IPC", level = "R", base_month = "01", base_year = "2005") get_estimation_gini(data = toy_ech_2018, variable = "y_wrv_pc_d_r", level = "i")
toy_ech_2018 <- income_constant_prices(data = ech::toy_ech_2018, index = "IPC", level = "R", base_month = "01", base_year = "2005") get_estimation_gini(data = toy_ech_2018, variable = "y_wrv_pc_d_r", level = "i")
This function allows you to estimate the Gender Pay Wage Gap (GPG)
get_estimation_gpg( data = ech::toy_ech_2018, variable = "total_income_per_hour", e26 = "e26", by = NULL, ids = NULL, estrato = NULL, pesoano = "pesoano", stat = "media" )
get_estimation_gpg( data = ech::toy_ech_2018, variable = "total_income_per_hour", e26 = "e26", by = NULL, ids = NULL, estrato = NULL, pesoano = "pesoano", stat = "media" )
data |
data.frame |
variable |
Variable name of total income per hour |
e26 |
Variable name of sex |
by |
data frame column |
ids |
Variable name of cluster |
estrato |
Variable name of strata |
pesoano |
Variable name of weights |
stat |
Media or Median |
table
Other estimation:
get_estimation_gini()
,
get_estimation_mean()
,
get_estimation_median()
,
get_estimation_qsr()
,
get_estimation_ratio()
,
get_estimation_total()
,
set_design()
toy_ech_2018 <- labor_income_per_hour(data = ech::toy_ech_2018, base_month = 6, base_year = 2018) get_estimation_gpg(data = toy_ech_2018, variable = "total_income_per_hour", e26 = "e26")
toy_ech_2018 <- labor_income_per_hour(data = ech::toy_ech_2018, base_month = 6, base_year = 2018) get_estimation_gpg(data = toy_ech_2018, variable = "total_income_per_hour", e26 = "e26")
This function allows you to estimate mean variable at universe level.
get_estimation_mean( data = ech::toy_ech_2018, variable = NULL, by.x = NULL, by.y = NULL, domain = NULL, level = NULL, ids = NULL, numero = "numero", estrato = NULL, pesoano = "pesoano", name = "estimacion" )
get_estimation_mean( data = ech::toy_ech_2018, variable = NULL, by.x = NULL, by.y = NULL, domain = NULL, level = NULL, ids = NULL, numero = "numero", estrato = NULL, pesoano = "pesoano", name = "estimacion" )
data |
data frame with ECH microdata |
variable |
data frame column to estimate |
by.x |
data frame column |
by.y |
data frame column |
domain |
subpopulation reference setted as character expresion of logical evaluation |
level |
is household ("h") or individual ("i"). |
ids |
ids |
numero |
household id |
estrato |
strata |
pesoano |
weights |
name |
name for the estimation new column |
Disclaimer: This script is not an official INE product. Aviso: El script no es un producto oficial de INE.
table
Other estimation:
get_estimation_gini()
,
get_estimation_gpg()
,
get_estimation_median()
,
get_estimation_qsr()
,
get_estimation_ratio()
,
get_estimation_total()
,
set_design()
get_estimation_mean(data = ech::toy_ech_2018, variable = "pobre06", by.x = "dpto", level = "h")
get_estimation_mean(data = ech::toy_ech_2018, variable = "pobre06", by.x = "dpto", level = "h")
This function allows you to estimate median variable at universe level.
get_estimation_median( data = ech::toy_ech_2018, variable = NULL, by.x = NULL, by.y = NULL, domain = NULL, level = NULL, ids = NULL, numero = "numero", estrato = NULL, pesoano = "pesoano", name = "estimacion" )
get_estimation_median( data = ech::toy_ech_2018, variable = NULL, by.x = NULL, by.y = NULL, domain = NULL, level = NULL, ids = NULL, numero = "numero", estrato = NULL, pesoano = "pesoano", name = "estimacion" )
data |
data frame with ECH microdata |
variable |
data frame column to estimate |
by.x |
data frame column |
by.y |
data frame column |
domain |
subpopulation reference setted as character expresion of logical evaluation |
level |
is household ("h") or individual ("i"). |
ids |
ids |
numero |
household id |
estrato |
strata |
pesoano |
weights |
name |
name for the estimation new column |
Disclaimer: This script is not an official INE product. Aviso: El script no es un producto oficial de INE.
table
Other estimation:
get_estimation_gini()
,
get_estimation_gpg()
,
get_estimation_mean()
,
get_estimation_qsr()
,
get_estimation_ratio()
,
get_estimation_total()
,
set_design()
get_estimation_median(data = ech::toy_ech_2018, variable = "ht11", by.x = "dpto", level = "h")
get_estimation_median(data = ech::toy_ech_2018, variable = "ht11", by.x = "dpto", level = "h")
This function allows you to estimate de Income Quintile Share Ratio
get_estimation_qsr( data = ech::toy_ech_2018, variable = "y_pc_d_r", by = NULL, ids = NULL, estrato = NULL, pesoano = "pesoano" )
get_estimation_qsr( data = ech::toy_ech_2018, variable = "y_pc_d_r", by = NULL, ids = NULL, estrato = NULL, pesoano = "pesoano" )
data |
data.frame |
variable |
Variable name of total income per hour |
by |
data frame column |
ids |
Variable name of cluster |
estrato |
Variable name of strata |
pesoano |
Variable name of weights |
table
Other estimation:
get_estimation_gini()
,
get_estimation_gpg()
,
get_estimation_mean()
,
get_estimation_median()
,
get_estimation_ratio()
,
get_estimation_total()
,
set_design()
toy_ech_2018 <- income_constant_prices(data = ech::toy_ech_2018, index = "IPC", level = "R", base_month = "01", base_year = "2005") get_estimation_qsr(data = toy_ech_2018, variable = "y_pc_d_r", pesoano = "pesoano")
toy_ech_2018 <- income_constant_prices(data = ech::toy_ech_2018, index = "IPC", level = "R", base_month = "01", base_year = "2005") get_estimation_qsr(data = toy_ech_2018, variable = "y_pc_d_r", pesoano = "pesoano")
This function allows you to estimate ratio variables at universe level.
get_estimation_ratio( data = ech::toy_ech_2018, variable.x = NULL, variable.y = NULL, by.x = NULL, by.y = NULL, domain = NULL, level = NULL, ids = NULL, numero = "numero", estrato = NULL, pesoano = "pesoano", name = "estimacion" )
get_estimation_ratio( data = ech::toy_ech_2018, variable.x = NULL, variable.y = NULL, by.x = NULL, by.y = NULL, domain = NULL, level = NULL, ids = NULL, numero = "numero", estrato = NULL, pesoano = "pesoano", name = "estimacion" )
data |
data frame with ECH microdata |
variable.x |
data frame column to estimate |
variable.y |
data frame column to estimate |
by.x |
data frame column |
by.y |
data frame column |
domain |
subpopulation reference setted as character expresion of logical evaluation |
level |
is household ("h") or individual ("i") |
ids |
Variable name of cluster |
numero |
Variable name of household id |
estrato |
Variable name of strata |
pesoano |
Variable name of weights |
name |
name for the estimation new column |
Disclaimer: This script is not an official INE product. Aviso: El script no es un producto oficial de INE.
table
Other estimation:
get_estimation_gini()
,
get_estimation_gpg()
,
get_estimation_mean()
,
get_estimation_median()
,
get_estimation_qsr()
,
get_estimation_total()
,
set_design()
toy_ech_2018 <- employment(data = ech::toy_ech_2018, pobpcoac = "pobpcoac") get_estimation_ratio(data = toy_ech_2018, variable.x = "po", variable.y = "pea", level = "i")
toy_ech_2018 <- employment(data = ech::toy_ech_2018, pobpcoac = "pobpcoac") get_estimation_ratio(data = toy_ech_2018, variable.x = "po", variable.y = "pea", level = "i")
This function allows you to estimate total variable at universe level.
get_estimation_total( data = ech::toy_ech_2018, variable = NULL, by.x = NULL, by.y = NULL, domain = NULL, level = NULL, ids = NULL, numero = "numero", estrato = NULL, pesoano = "pesoano", name = "estimacion" )
get_estimation_total( data = ech::toy_ech_2018, variable = NULL, by.x = NULL, by.y = NULL, domain = NULL, level = NULL, ids = NULL, numero = "numero", estrato = NULL, pesoano = "pesoano", name = "estimacion" )
data |
data frame with ECH microdata |
variable |
data frame column to estimate |
by.x |
data frame column |
by.y |
data frame column |
domain |
subpopulation reference setted as character expresion of logical evaluation |
level |
is household ("h") or individual ("i"). |
ids |
ids |
numero |
household id |
estrato |
strata |
pesoano |
weights |
name |
name for the estimation new column |
Disclaimer: This script is not an official INE product. Aviso: El script no es un producto oficial de INE.
table
Other estimation:
get_estimation_gini()
,
get_estimation_gpg()
,
get_estimation_mean()
,
get_estimation_median()
,
get_estimation_qsr()
,
get_estimation_ratio()
,
set_design()
get_estimation_total(variable = "pobre06", by.x = "dpto", level = "h")
get_estimation_total(variable = "pobre06", by.x = "dpto", level = "h")
This function allows you to download and read ECH from INE website
get_microdata(year = NULL, folder = tempdir(), toR = TRUE)
get_microdata(year = NULL, folder = tempdir(), toR = TRUE)
year |
allows download data from 2011 to 2019. Default the last year |
folder |
Folder where are the files or be download |
toR |
write data frame in R format and delete download file and unpack files |
Disclaimer: This script is not an official INE product. Aviso: El script no es un producto oficial de INE.
unrar files from INE web and the respective data frame in tibble format
Other dwnld_read:
read_microdata()
This function allows you to calculate the household type for each household in the survey. A household is composed of one or more people who occupy a housing unit.
household_type( data = ech::toy_ech_2018, numero = "numero", e26 = "e26", e27 = "e27", e30 = "e30" )
household_type( data = ech::toy_ech_2018, numero = "numero", e26 = "e26", e27 = "e27", e30 = "e30" )
data |
data frame with ECH microdata |
numero |
Variable name of household id |
e26 |
Variable name of sex |
e27 |
Variable name of age |
e30 |
Variable name of householder |
Disclaimer: This script is not an official INE product. Aviso: El script no es un producto oficial de INE.
data.frame
Other demographic:
age_groups()
toy_ech_2018 <- household_type(data = ech::toy_ech_2018)
toy_ech_2018 <- household_type(data = ech::toy_ech_2018)
This function allows you to calculate the housing conditions
housing_conditions(data = ech::toy_ech_2018, c2 = "c2", c3 = "c3", c4 = "c4")
housing_conditions(data = ech::toy_ech_2018, c2 = "c2", c3 = "c3", c4 = "c4")
data |
data.frame |
c2 |
Variable name of predominant material on external walls |
c3 |
Variable name of predominant roofing material |
c4 |
Variable name of predominant flooring material |
Disclaimer: This script is not an official INE product. Aviso: El script no es un producto oficial de INE.
data.frame
Other dwelling:
housing_deprivation()
,
housing_situation()
,
housing_tenure()
,
overcrowding()
toy_ech_2018 <- housing_conditions(data = ech::toy_ech_2018)
toy_ech_2018 <- housing_conditions(data = ech::toy_ech_2018)
This function allows you to calculate the housing status
housing_deprivation( data = ech::toy_ech_2018, n = 1, ht19 = "ht19", d9 = "d9", d10 = "d10", d11 = "d11", d12 = "d12", d13 = "d13", d16 = "d16", d18 = "d18", d19 = "d19", c2 = "c2", c3 = "c3", c4 = "c4", quintil = "quintil", region_4 = "region_4" )
housing_deprivation( data = ech::toy_ech_2018, n = 1, ht19 = "ht19", d9 = "d9", d10 = "d10", d11 = "d11", d12 = "d12", d13 = "d13", d16 = "d16", d18 = "d18", d19 = "d19", c2 = "c2", c3 = "c3", c4 = "c4", quintil = "quintil", region_4 = "region_4" )
data |
data.frame |
n |
number of deprivations to consider. Default 1 |
ht19 |
Variable name of number of individuals in the household |
d9 |
Variable name of number of rooms |
d10 |
Variable name of number of rooms to sleep |
d11 |
Variable name of principal source of potable water |
d12 |
Variable name of water supply network / water access |
d13 |
Variable name of sanitary facilities |
d16 |
Variable name of sewerage facilities |
d18 |
Variable name of energy source for lighting |
d19 |
Variable name of cooking space |
c2 |
Variable name of predominant material on external walls |
c3 |
Variable name of predominant roofing material |
c4 |
Variable name of predominant flooring material |
quintil |
Variable name of income quintil |
region_4 |
Variable name of region |
Disclaimer: This script is not an official INE product. Aviso: El script no es un producto oficial de INE.
data.frame
Other dwelling:
housing_conditions()
,
housing_situation()
,
housing_tenure()
,
overcrowding()
toy_ech_2018 <- income_constant_prices(data = ech::toy_ech_2018) toy_ech_2018 <- income_quantiles(data = toy_ech_2018) toy_ech_2018 <- housing_deprivation(data = toy_ech_2018)
toy_ech_2018 <- income_constant_prices(data = ech::toy_ech_2018) toy_ech_2018 <- income_quantiles(data = toy_ech_2018) toy_ech_2018 <- housing_deprivation(data = toy_ech_2018)
This function allows you to calculate the housing situation
housing_situation( data = ech::toy_ech_2018, c5_1 = "c5_1", c5_2 = "c5_2", c5_3 = "c5_3", c5_4 = "c5_4", c5_5 = "c5_5", c5_6 = "c5_6", c5_7 = "c5_7", c5_8 = "c5_8", c5_9 = "c5_9", c5_10 = "c5_10", c5_11 = "c5_11", c5_12 = "c5_12" )
housing_situation( data = ech::toy_ech_2018, c5_1 = "c5_1", c5_2 = "c5_2", c5_3 = "c5_3", c5_4 = "c5_4", c5_5 = "c5_5", c5_6 = "c5_6", c5_7 = "c5_7", c5_8 = "c5_8", c5_9 = "c5_9", c5_10 = "c5_10", c5_11 = "c5_11", c5_12 = "c5_12" )
data |
data.frame |
c5_1 |
Variable name of roof condensation |
c5_2 |
Variable name of roof drips |
c5_3 |
Variable name of walls cracks |
c5_4 |
Variable name of broken doors or windows |
c5_5 |
Variable name of floors cracks |
c5_6 |
Variable name of plaster drop on walls |
c5_7 |
Variable name of detached ceilings |
c5_8 |
Variable name of poor sunlight |
c5_9 |
Variable name of poor ventilation |
c5_10 |
Variable name of floods when it rains |
c5_11 |
Variable name of in danger of collapse |
c5_12 |
Variable name of dampness in the foundations |
Disclaimer: This script is not an official INE product. Aviso: El script no es un producto oficial de INE.
data.frame
Other dwelling:
housing_conditions()
,
housing_deprivation()
,
housing_tenure()
,
overcrowding()
toy_ech_2018 <- housing_situation(data = ech::toy_ech_2018)
toy_ech_2018 <- housing_situation(data = ech::toy_ech_2018)
This function allows you to calculate the housing tenure
housing_tenure(data = ech::toy_ech_2018, d8_1 = "d8_1")
housing_tenure(data = ech::toy_ech_2018, d8_1 = "d8_1")
data |
data.frame |
d8_1 |
Variable name of housing_tenure (owner, renter, rent-free occupancy, etc.) |
Disclaimer: This script is not an official INE product. Aviso: El script no es un producto oficial de INE.
data.frame
Other dwelling:
housing_conditions()
,
housing_deprivation()
,
housing_situation()
,
overcrowding()
toy_ech_2018 <- housing_tenure(data = ech::toy_ech_2018)
toy_ech_2018 <- housing_tenure(data = ech::toy_ech_2018)
This function allows you to calculate the household income constant prices
income_constant_prices( data = ech::toy_ech_2018, base_month = 6, base_year = 2018, index = "IPC", level = "G", mes = "mes", ht11 = "ht11", ht13 = "ht13", ht19 = "ht19" )
income_constant_prices( data = ech::toy_ech_2018, base_month = 6, base_year = 2018, index = "IPC", level = "G", mes = "mes", ht11 = "ht11", ht13 = "ht13", ht19 = "ht19" )
data |
data.frame with ECH microdata |
base_month |
baseline month |
base_year |
baseline year |
index |
IPC or IPAB |
level |
General ("G") or Regional ("R") |
mes |
month |
ht11 |
Variable name of income. Default: ht11 |
ht13 |
Variable name of rental value. Default: ht13 |
ht19 |
Variable name of number of individuals in the household. Default: ht19 |
Disclaimer: This script is not an official INE product. Aviso: El script no es un producto oficial de INE.
data.frame
Other income:
basket_goods()
,
deflate()
,
income_quantiles()
,
labor_income_per_capita()
,
labor_income_per_hour()
,
organize_ht11()
toy_ech_2018 <- income_constant_prices(data = ech::toy_ech_2018)
toy_ech_2018 <- income_constant_prices(data = ech::toy_ech_2018)
This function allows you to calculate the Household Income Quantiles
income_quantiles( data = ech::toy_ech_2018, quantile = 5, weights = "pesoano", income = "y_pc_d" )
income_quantiles( data = ech::toy_ech_2018, quantile = 5, weights = "pesoano", income = "y_pc_d" )
data |
data.frame |
quantile |
Variable name of quintil (5) or decil (10). Default: 5 |
weights |
Variable name of ponderation variable. Default: "pesoano" |
income |
Variable name of income constant price. Default: "y_pc_d" |
Disclaimer: This script is not an official INE product. Aviso: El script no es un producto oficial de INE.
data.frame
Other income:
basket_goods()
,
deflate()
,
income_constant_prices()
,
labor_income_per_capita()
,
labor_income_per_hour()
,
organize_ht11()
toy_ech_2018 <- income_constant_prices(data = ech::toy_ech_2018) toy_ech_2018 <- income_quantiles(data = toy_ech_2018)
toy_ech_2018 <- income_constant_prices(data = ech::toy_ech_2018) toy_ech_2018 <- income_quantiles(data = toy_ech_2018)
This function allows you to calculate an integrated poverty measure
integrated_poverty_measure( data = ech::toy_ech_2018, pobre06 = "pobre06", UBN_q = "UBN_q" )
integrated_poverty_measure( data = ech::toy_ech_2018, pobre06 = "pobre06", UBN_q = "UBN_q" )
data |
data.frame |
pobre06 |
Variable name of poverty |
UBN_q |
Variable name of UBN |
data.frame
Other poverty:
poverty()
,
unsatisfied_basic_needs()
toy_ech_18 <- enrolled_school(data = ech::toy_ech_2018) toy_ech_18 <- years_of_schooling(toy_ech_18) toy_ech_18 <- unsatisfied_basic_needs(toy_ech_18) toy_ech_18 <- integrated_poverty_measure(data = toy_ech_18)
toy_ech_18 <- enrolled_school(data = ech::toy_ech_2018) toy_ech_18 <- years_of_schooling(toy_ech_18) toy_ech_18 <- unsatisfied_basic_needs(toy_ech_18) toy_ech_18 <- integrated_poverty_measure(data = toy_ech_18)
A dataset containing the IPAB
ipab_base2010
ipab_base2010
A data frame with 286 rows and 2 variables:
date from 1997 to 2020
IPAB
Disclaimer: This script is not an official INE product. Aviso: El script no es un producto oficial de INE.
https://www.gub.uy/instituto-nacional-estadistica/
Other dataset:
cba_cbna_int
,
cba_cbna_mdeo
,
cba_cbna_rur
,
dic
,
ipab_base2010_int
,
ipab_base2010_mdeo
,
ipc_base2010_int
,
ipc_base2010_mdeo
,
ipc_base2010
,
toy_ech_2018_income
,
toy_ech_2018
,
urls_ine
A dataset containing the IPAB for the Interior region
ipab_base2010_int
ipab_base2010_int
A data frame with 108 rows and 2 variables:
date from 2011 to 2019
IPAB
Disclaimer: This script is not an official INE product. Aviso: El script no es un producto oficial de INE.
https://www.gub.uy/instituto-nacional-estadistica/
Other dataset:
cba_cbna_int
,
cba_cbna_mdeo
,
cba_cbna_rur
,
dic
,
ipab_base2010_mdeo
,
ipab_base2010
,
ipc_base2010_int
,
ipc_base2010_mdeo
,
ipc_base2010
,
toy_ech_2018_income
,
toy_ech_2018
,
urls_ine
A dataset containing the IPAB for the Montevideo region
ipab_base2010_mdeo
ipab_base2010_mdeo
A data frame with 108 rows and 2 variables:
date from 2011 to 2019
IPAB
Disclaimer: This script is not an official INE product. Aviso: El script no es un producto oficial de INE.
https://www.gub.uy/instituto-nacional-estadistica/
Other dataset:
cba_cbna_int
,
cba_cbna_mdeo
,
cba_cbna_rur
,
dic
,
ipab_base2010_int
,
ipab_base2010
,
ipc_base2010_int
,
ipc_base2010_mdeo
,
ipc_base2010
,
toy_ech_2018_income
,
toy_ech_2018
,
urls_ine
A dataset containing the IPC base 2010
ipc_base2010
ipc_base2010
A data frame with 990 rows and 5 variables:
date from 1937 to 2019
IPC
mensual value of IPC
three-month period value of IPC
four-month period value of IPC
six-month period value of IPC
acumulated IPC
acumulated IPC last 12 month
Disclaimer: This script is not an official INE product. Aviso: El script no es un producto oficial de INE.
https://www.gub.uy/instituto-nacional-estadistica/
Other dataset:
cba_cbna_int
,
cba_cbna_mdeo
,
cba_cbna_rur
,
dic
,
ipab_base2010_int
,
ipab_base2010_mdeo
,
ipab_base2010
,
ipc_base2010_int
,
ipc_base2010_mdeo
,
toy_ech_2018_income
,
toy_ech_2018
,
urls_ine
A dataset containing the IPC base 2010 only for the Interior region
ipc_base2010_int
ipc_base2010_int
A data frame with 120 rows and 2 variables:
date from 2011 to 2019
IPC
Disclaimer: This script is not an official INE product. Aviso: El script no es un producto oficial de INE.
https://www.gub.uy/instituto-nacional-estadistica/
Other dataset:
cba_cbna_int
,
cba_cbna_mdeo
,
cba_cbna_rur
,
dic
,
ipab_base2010_int
,
ipab_base2010_mdeo
,
ipab_base2010
,
ipc_base2010_mdeo
,
ipc_base2010
,
toy_ech_2018_income
,
toy_ech_2018
,
urls_ine
A dataset containing the IPC base 2010 only for the Montevideo region
ipc_base2010_mdeo
ipc_base2010_mdeo
A data frame with 120 rows and 2 variables:
date from 2011 to 2019
IPC
Disclaimer: This script is not an official INE product. Aviso: El script no es un producto oficial de INE.
https://www.gub.uy/instituto-nacional-estadistica/
Other dataset:
cba_cbna_int
,
cba_cbna_mdeo
,
cba_cbna_rur
,
dic
,
ipab_base2010_int
,
ipab_base2010_mdeo
,
ipab_base2010
,
ipc_base2010_int
,
ipc_base2010
,
toy_ech_2018_income
,
toy_ech_2018
,
urls_ine
This function allows you to calculate the labor income per capita
labor_income_per_capita( data = ech::toy_ech_2018, numero = "numero", pobpcoac = "pobpcoac", g126_1 = "g126_1", g126_2 = "g126_2", g126_3 = "g126_3", g126_4 = "g126_4", g126_5 = "g126_5", g126_6 = "g126_6", g126_7 = "g126_7", g126_8 = "g126_8", g127_3 = "g127_3", g128_1 = "g128_1", g129_2 = "g129_2", g130_1 = "g130_1", g131_1 = "g131_1", g133_1 = "g133_1", g133_2 = "g133_2", g134_1 = "g134_1", g134_2 = "g134_2", g134_3 = "g134_3", g134_4 = "g134_4", g134_5 = "g134_5", g134_6 = "g134_6", g134_7 = "g134_7", g134_8 = "g134_8", g135_3 = "g135_3", g136_1 = "g136_1", g137_2 = "g137_2", g138_1 = "g138_1", g139_1 = "g139_1", g141_1 = "g141_1", g141_2 = "g141_2", g142 = "g142", g144_1 = "g144_1", g144_2_1 = "g144_2_1", g144_2_3 = "g144_2_3", g144_2_4 = "g144_2_4", g144_2_5 = "g144_2_5" )
labor_income_per_capita( data = ech::toy_ech_2018, numero = "numero", pobpcoac = "pobpcoac", g126_1 = "g126_1", g126_2 = "g126_2", g126_3 = "g126_3", g126_4 = "g126_4", g126_5 = "g126_5", g126_6 = "g126_6", g126_7 = "g126_7", g126_8 = "g126_8", g127_3 = "g127_3", g128_1 = "g128_1", g129_2 = "g129_2", g130_1 = "g130_1", g131_1 = "g131_1", g133_1 = "g133_1", g133_2 = "g133_2", g134_1 = "g134_1", g134_2 = "g134_2", g134_3 = "g134_3", g134_4 = "g134_4", g134_5 = "g134_5", g134_6 = "g134_6", g134_7 = "g134_7", g134_8 = "g134_8", g135_3 = "g135_3", g136_1 = "g136_1", g137_2 = "g137_2", g138_1 = "g138_1", g139_1 = "g139_1", g141_1 = "g141_1", g141_2 = "g141_2", g142 = "g142", g144_1 = "g144_1", g144_2_1 = "g144_2_1", g144_2_3 = "g144_2_3", g144_2_4 = "g144_2_4", g144_2_5 = "g144_2_5" )
data |
data frame |
numero |
Variable name of household id |
pobpcoac |
Variable name of definition of population by activity status |
g126_1 |
Variable name of net salary |
g126_2 |
Variable name of commissions, incentives, overtime payment, fringe benefits |
g126_3 |
Variable name of non-surrendering expenses |
g126_4 |
Variable name of tips |
g126_5 |
Variable name of annual complementary salary |
g126_6 |
Variable name of vacation pay |
g126_7 |
Variable name of delayed payments |
g126_8 |
Variable name of transportation tickets |
g127_3 |
Variable name of received food or drink |
g128_1 |
Variable name of received food tickets |
g129_2 |
Variable name of received housing or accommodation |
g130_1 |
Variable name of another type of compensation |
g131_1 |
Variable name of received another type of supplement paid by the employer |
g133_1 |
Variable name of the right to cultivate goods for own-consumption |
g133_2 |
Variable name of the right to cultivate goods for own-consumption (amount received from the sale) |
g134_1 |
Variable name of net salary |
g134_2 |
Variable name of commissions, incentives, overtime payment, fringe benefits |
g134_3 |
Variable name of non-surrendering expenses |
g134_4 |
Variable name of tips |
g134_5 |
Variable name of annual complementary salary |
g134_6 |
Variable name of vacation pay |
g134_7 |
Variable name of delayed payments |
g134_8 |
Variable name of transportation tickets |
g135_3 |
Variable name of received food or drink |
g136_1 |
Variable name of received food tickets |
g137_2 |
Variable name of received housing or accommodation |
g138_1 |
Variable name of another type of compensation |
g139_1 |
Variable name of received another type of supplement paid by the employer |
g141_1 |
Variable name of the right to cultivate goods for own-consumption |
g141_2 |
Variable name of the right to cultivate goods for own-consumption (amount received from the sale) |
g142 |
Variable name of withdrawals for business household expenses you have or had |
g144_1 |
Variable name of collected products for own consumption (non-agricultural worker) |
g144_2_1 |
Variable name of collected products for own consumption (non-agricultural worker) |
g144_2_3 |
Variable name of collected products for own consumption (non-agricultural worker) |
g144_2_4 |
Variable name of collected products for own consumption (non-agricultural worker) |
g144_2_5 |
Variable name of collected products for own consumption (non-agricultural worker) |
Disclaimer: This script is not an official INE product. Aviso: El script no es un producto oficial de INE.
data.frame
Other income:
basket_goods()
,
deflate()
,
income_constant_prices()
,
income_quantiles()
,
labor_income_per_hour()
,
organize_ht11()
toy_ech_2018 <- labor_income_per_capita(data = ech::toy_ech_2018)
toy_ech_2018 <- labor_income_per_capita(data = ech::toy_ech_2018)
This function allows you to calculate the labor income per hour
labor_income_per_hour( data = ech::toy_ech_2018, numero = "numero", f85 = "f85", pobpcoac = "pobpcoac", pt4 = "pt4", base_month = 6, base_year = 2018, mes = "mes" )
labor_income_per_hour( data = ech::toy_ech_2018, numero = "numero", f85 = "f85", pobpcoac = "pobpcoac", pt4 = "pt4", base_month = 6, base_year = 2018, mes = "mes" )
data |
data frame |
numero |
Variable name of household id |
f85 |
Variable name of hours worked per week |
pobpcoac |
Variable name of definition of population by activity status |
pt4 |
Variable name of total employment income |
base_month |
baseline month |
base_year |
baseline year |
mes |
month |
Disclaimer: This script is not an official INE product. Aviso: El script no es un producto oficial de INE.
data.frame
Other income:
basket_goods()
,
deflate()
,
income_constant_prices()
,
income_quantiles()
,
labor_income_per_capita()
,
organize_ht11()
toy_ech_2018 <- ech::toy_ech_2018 toy_ech_2018 <- labor_income_per_hour(data = toy_ech_2018, base_month = "06", base_year = "2018")
toy_ech_2018 <- ech::toy_ech_2018 toy_ech_2018 <- labor_income_per_hour(data = toy_ech_2018, base_month = "06", base_year = "2018")
This function allows you to calculate the level of school completion
level_completion( data = ech::toy_ech_2018, e197 = "e197", e197_1 = "e197_1", e201 = "e201", e51_4 = "e51_4", e51_5 = "e51_5", e51_6 = "e51_6", e51_7_1 = "e51_7_1", e51_7 = "e51_7", e51_8 = "e51_8", e51_9 = "e51_9", e51_10 = "e51_10", e212 = "e212", e215 = "e215", e218 = "e218", e221 = "e221", n = 4 )
level_completion( data = ech::toy_ech_2018, e197 = "e197", e197_1 = "e197_1", e201 = "e201", e51_4 = "e51_4", e51_5 = "e51_5", e51_6 = "e51_6", e51_7_1 = "e51_7_1", e51_7 = "e51_7", e51_8 = "e51_8", e51_9 = "e51_9", e51_10 = "e51_10", e212 = "e212", e215 = "e215", e218 = "e218", e221 = "e221", n = 4 )
data |
data.frame |
e197 |
Variable name of attends primary school |
e197_1 |
Variable name of completed primary |
e201 |
Variable name of attends secondary |
e51_4 |
Variable name of years passed in lower secondary |
e51_5 |
Variable name of years passed in upper secondary |
e51_6 |
Variable name of years passed in technical upper secondary |
e51_7_1 |
Variable name of technical education requirements |
e51_7 |
Variable name of years passed in technical education |
e51_8 |
Variable name of years passed in magisterio/profesorado |
e51_9 |
Variable name of years passed in university or similar |
e51_10 |
Variable name of years passed in tertiary (non-university) |
e212 |
Variable name of attendance technical school (non-university) |
e215 |
Variable name of attendance magisterio |
e218 |
Variable name of attendance university |
e221 |
Variable name of attendance tertiary |
n |
years of tertiary |
Disclaimer: This script is not an official INE product. Aviso: El script no es un producto oficial de INE.
data.frame
Other education:
enrolled_school()
,
level_education()
,
organize_educ()
,
years_of_schooling()
toy_ech_2018 <- level_completion(data = ech::toy_ech_2018)
toy_ech_2018 <- level_completion(data = ech::toy_ech_2018)
This function allows you to calculate the highest level of education achieved
level_education( data = ech::toy_ech_2018, e51_2 = "e51_2", e51_3 = "e51_3", e51_4 = "e51_4", e51_5 = "e51_5", e51_6 = "e51_6", e51_7 = "e51_7", e51_7_1 = "e51_7_1", e51_8 = "e51_8", e51_9 = "e51_9", e51_10 = "e51_10", e51_11 = "e51_11", e193 = "e193", e49 = "e49" )
level_education( data = ech::toy_ech_2018, e51_2 = "e51_2", e51_3 = "e51_3", e51_4 = "e51_4", e51_5 = "e51_5", e51_6 = "e51_6", e51_7 = "e51_7", e51_7_1 = "e51_7_1", e51_8 = "e51_8", e51_9 = "e51_9", e51_10 = "e51_10", e51_11 = "e51_11", e193 = "e193", e49 = "e49" )
data |
data.frame |
e51_2 |
Variable name of years passed in primary |
e51_3 |
Variable name of years passed in special primary |
e51_4 |
Variable name of years passed in lower secondary |
e51_5 |
Variable name of years passed in upper secondary |
e51_6 |
Variable name of years passed in technical upper secondary |
e51_7 |
Variable name of years passed in technical school |
e51_7_1 |
Variable name of technical school requirements |
e51_8 |
Variable name of years passed in magisterio/profesorado |
e51_9 |
Variable name of years passed in university or similar |
e51_10 |
Variable name of years passed in tertiary (non-university) |
e51_11 |
Variable name of years passed in postgrade |
e193 |
Variable name of attendance school |
e49 |
Variable name of attendance school ever |
Disclaimer: This script is not an official INE product. Aviso: El script no es un producto oficial de INE.
data.frame
Other education:
enrolled_school()
,
level_completion()
,
organize_educ()
,
years_of_schooling()
toy_ech_2018 <- level_education(data = ech::toy_ech_2018)
toy_ech_2018 <- level_education(data = ech::toy_ech_2018)
This function allows you to fix education variables from 2021
organize_educ(data, year, e49 = "e49", e579 = "e579", numero = "numero")
organize_educ(data, year, e49 = "e49", e579 = "e579", numero = "numero")
data |
data.frame |
year |
survey year |
e49 |
Variable name of e49 |
e579 |
Variable name of e579 |
numero |
Variable name of numero |
data.frame
Other education:
enrolled_school()
,
level_completion()
,
level_education()
,
years_of_schooling()
This function allows you to fix ht11 from 2013 to 2015
organize_ht11(data, year, ht11 = "ht11", numero = "numero")
organize_ht11(data, year, ht11 = "ht11", numero = "numero")
data |
data.frame |
year |
survey year |
ht11 |
Variable name of ht11 |
numero |
Variable name of numero |
data.frame
Other income:
basket_goods()
,
deflate()
,
income_constant_prices()
,
income_quantiles()
,
labor_income_per_capita()
,
labor_income_per_hour()
toy_ech_2018 <- organize_ht11(data = ech::toy_ech_2018, year = 2018)
toy_ech_2018 <- organize_ht11(data = ech::toy_ech_2018, year = 2018)
This function allows you to organize the variables names of ECH with reference in 2017.
organize_names(data, year, level = "hyp")
organize_names(data, year, level = "hyp")
data |
data.frame contains the ECH microdata |
year |
numeric reference year of the data. Available from 2011 to 2019 |
level |
(string) indicates whether the base to be labelled is of the type "household", "h", "individual", "i" or both, "hyp". Default "hyp" |
Disclaimer: This script is not an official INE product. Aviso: El script no es un producto oficial de INE.
data.frame
Other organize:
to_ascii()
toy_ech_2018 <- organize_names(data = ech::toy_ech_2018, year = 2018, level = "h")
toy_ech_2018 <- organize_names(data = ech::toy_ech_2018, year = 2018, level = "h")
This function allows you to calculate overcrowding in the household
overcrowding(data = ech::toy_ech_2018, ht19 = "ht19", d10 = "d10")
overcrowding(data = ech::toy_ech_2018, ht19 = "ht19", d10 = "d10")
data |
data.frame |
ht19 |
Variable name of umber of individuals in the household |
d10 |
Variable name of number of rooms to sleep |
Disclaimer: This script is not an official INE product. Aviso: El script no es un producto oficial de INE.
data.frame
Other dwelling:
housing_conditions()
,
housing_deprivation()
,
housing_situation()
,
housing_tenure()
toy_ech_2018 <- overcrowding(data = ech::toy_ech_2018)
toy_ech_2018 <- overcrowding(data = ech::toy_ech_2018)
This function allows you to calculate poor and indigent people or household
poverty( data = ech::toy_ech_2018, scale = 0.8, region_4 = "region_4", dpto = "dpto", ht11 = "ht11", ht19 = "ht19", numero = "numero" )
poverty( data = ech::toy_ech_2018, scale = 0.8, region_4 = "region_4", dpto = "dpto", ht11 = "ht11", ht19 = "ht19", numero = "numero" )
data |
data.frame |
scale |
equivalency scale |
region_4 |
Variable name of region. Default: region_4 |
dpto |
Variable name of departamento. Default: dpto |
ht11 |
Variable name of income. Default: ht11 |
ht19 |
Variable name of number of individuals in the household. Default: ht19 |
numero |
household id |
Disclaimer: This script is not an official INE product. Aviso: El script no es un producto oficial de INE.
data.frame
Other poverty:
integrated_poverty_measure()
,
unsatisfied_basic_needs()
toy_ech_2018 <- poverty(data = ech::toy_ech_2018)
toy_ech_2018 <- poverty(data = ech::toy_ech_2018)
This function allows you to read ECH from a local folder
read_microdata(path = NULL)
read_microdata(path = NULL)
path |
Folder where are the files or be download |
Disclaimer: El script no es un producto oficial de INE.
Disclaimer: This script is not an official INE product. Aviso: El script no es un producto oficial de INE.
an object called df
Other dwnld_read:
get_microdata()
This function allows you to set the survey desing
set_design( data = ech::toy_ech_2018, level = "i", numero = "numero", ids = NULL, estrato = NULL, pesoano = "pesoano" )
set_design( data = ech::toy_ech_2018, level = "i", numero = "numero", ids = NULL, estrato = NULL, pesoano = "pesoano" )
data |
data frame with ECH microdata |
level |
is household ("h") or individual ("i") |
numero |
variables specifying the householder ids |
ids |
variables specifying the unit primary sampling (it's not a public variable) |
estrato |
variable specifying strata |
pesoano |
variable specifying weights |
Disclaimer: This script is not an official INE product. Aviso: El script no es un producto oficial de INE.
a list
Other estimation:
get_estimation_gini()
,
get_estimation_gpg()
,
get_estimation_mean()
,
get_estimation_median()
,
get_estimation_qsr()
,
get_estimation_ratio()
,
get_estimation_total()
set_design(data = ech::toy_ech_2018, level = "h")
set_design(data = ech::toy_ech_2018, level = "h")
to_ascii
to_ascii(x, upper = TRUE)
to_ascii(x, upper = TRUE)
x |
a column |
upper |
logic. Default TRUE |
vector
Other organize:
organize_names()
d <- lapply(dic, to_ascii)
d <- lapply(dic, to_ascii)
A dataset containing only 1000 raws of the ECH 2018
toy_ech_2018
toy_ech_2018
A data frame with 1000 rows and 579 variables:
household id
...
Disclaimer: This script is not an official INE product. Aviso: El script no es un producto oficial de INE.
https://www.gub.uy/instituto-nacional-estadistica/
Other dataset:
cba_cbna_int
,
cba_cbna_mdeo
,
cba_cbna_rur
,
dic
,
ipab_base2010_int
,
ipab_base2010_mdeo
,
ipab_base2010
,
ipc_base2010_int
,
ipc_base2010_mdeo
,
ipc_base2010
,
toy_ech_2018_income
,
urls_ine
A dataset containing only 1000 raws of the ECH 2018 income variables
toy_ech_2018_income
toy_ech_2018_income
A data frame with 1000 rows and 9 variables:
household id
...
Disclaimer: This script is not an official INE product. Aviso: El script no es un producto oficial de INE.
https://www.gub.uy/instituto-nacional-estadistica/
Other dataset:
cba_cbna_int
,
cba_cbna_mdeo
,
cba_cbna_rur
,
dic
,
ipab_base2010_int
,
ipab_base2010_mdeo
,
ipab_base2010
,
ipc_base2010_int
,
ipc_base2010_mdeo
,
ipc_base2010
,
toy_ech_2018
,
urls_ine
This function allows you to identify underemployed people
underemployment( data = ech::toy_ech_2018, pobpcoac = "pobpcoac", f85 = "f85", f98 = "f98", f101 = "f101", f102 = "f102", f103 = "f103", f104 = "f104" )
underemployment( data = ech::toy_ech_2018, pobpcoac = "pobpcoac", f85 = "f85", f98 = "f98", f101 = "f101", f102 = "f102", f103 = "f103", f104 = "f104" )
data |
data.frame |
pobpcoac |
Variable name of definition of population by activity status. Default: "pobpcoac" |
f85 |
Variable name of number of hours worked in the main job |
f98 |
Variable name of Number of hours worked at the secondary job |
f101 |
Variable name of reasons why you want another job |
f102 |
Variable name of want to work more hours |
f103 |
Variable name of are available to work more hours at this time |
f104 |
Variable name of reasons why you dont work more hours |
Disclaimer: This script is not an official INE product. Aviso: El script no es un producto oficial de INE.
data.frame
Other employment:
branch_ciiu()
,
employment_restrictions()
,
employment()
toy_ech_2018 <- underemployment(data = ech::toy_ech_2018)
toy_ech_2018 <- underemployment(data = ech::toy_ech_2018)
This function allows you to labelled variables
unlabelled(data = NULL)
unlabelled(data = NULL)
data |
data frame |
data.frame
Other utils:
archive_extract()
,
dates_ech()
,
ech
,
unrarPath
df <- unlabelled(data = ech::toy_ech_2018)
df <- unlabelled(data = ech::toy_ech_2018)
The known path for unrar or 7z
.unrarPath
.unrarPath
An object of class NULL
of length 0.
Other utils:
archive_extract()
,
dates_ech()
,
ech
,
unlabelled()
This function allows you to calculate de Unsatisfied Basic Needs
unsatisfied_basic_needs( data = ech::toy_ech_2018, c2 = "c2", c3 = "c3", c4 = "c4", d9 = "d9", d11 = "d11", d12 = "d12", d13 = "d13", d14 = "d14", d15 = "d15", d16 = "d16", d18 = "d18", d19 = "d19", d21_1 = "d21_1", d21_2 = "d21_2", d21_3 = "d21_3", d260 = "d260", ht19 = "ht19", pobre06 = "pobre06", e27 = "e27", school_enrollment = "school_enrollment", years_schooling = "years_schooling", e238 = "e238", anio = "anio" )
unsatisfied_basic_needs( data = ech::toy_ech_2018, c2 = "c2", c3 = "c3", c4 = "c4", d9 = "d9", d11 = "d11", d12 = "d12", d13 = "d13", d14 = "d14", d15 = "d15", d16 = "d16", d18 = "d18", d19 = "d19", d21_1 = "d21_1", d21_2 = "d21_2", d21_3 = "d21_3", d260 = "d260", ht19 = "ht19", pobre06 = "pobre06", e27 = "e27", school_enrollment = "school_enrollment", years_schooling = "years_schooling", e238 = "e238", anio = "anio" )
data |
data.frame |
c2 |
Variable name of predominant material on external walls |
c3 |
Variable name of predominant roofing material |
c4 |
Variable name of predominant flooring material |
d9 |
Variable name of number of rooms |
d11 |
Variable name of principal source of potable water |
d12 |
Variable name of water supply network / water access |
d13 |
Variable name of sanitary facilities |
d14 |
Variable name of bathroom presence |
d15 |
Variable name of private bathroom use |
d16 |
Variable name of sewerage facilities |
d18 |
Variable name of energy source for lighting |
d19 |
Variable name of cooking space |
d21_1 |
Variable name of heater or termophon presence |
d21_2 |
Variable name of instantaneous water heater presence |
d21_3 |
Variable name of fridge presence |
d260 |
Variable name of energy source for heating |
ht19 |
Variable name of number of individuals in the household |
pobre06 |
Variable name of poverty |
e27 |
Variable name of age |
school_enrollment |
Variable name of school_enrollment |
years_schooling |
Variable name of years_schooling |
e238 |
Variable name of attendance to initial education |
anio |
Variable name of survey year |
Based on [Fascículo I: Las Necesidades Básicas Insatisfechas a partir de los Censos 2011](https://www5.ine.gub.uy/documents/Demograf Disclaimer: This script is not an official INE product. Aviso: El script no es un producto oficial de INE.
data.frame
Other poverty:
integrated_poverty_measure()
,
poverty()
toy_ech_18 <- enrolled_school(data = ech::toy_ech_2018) toy_ech_18 <- years_of_schooling(toy_ech_18) toy_ech_18 <- unsatisfied_basic_needs(toy_ech_18)
toy_ech_18 <- enrolled_school(data = ech::toy_ech_2018) toy_ech_18 <- years_of_schooling(toy_ech_18) toy_ech_18 <- unsatisfied_basic_needs(toy_ech_18)
A dataset containing the urls of INE datasets and diccionaries
urls_ine
urls_ine
A data frame with 9 rows and 4 variables:
date from 2011 to 2019
url for microdata download
url for upm download
url for dictionary download
Disclaimer: This script is not an official INE product. Aviso: El script no es un producto oficial de INE.
https://www.gub.uy/instituto-nacional-estadistica/
Other dataset:
cba_cbna_int
,
cba_cbna_mdeo
,
cba_cbna_rur
,
dic
,
ipab_base2010_int
,
ipab_base2010_mdeo
,
ipab_base2010
,
ipc_base2010_int
,
ipc_base2010_mdeo
,
ipc_base2010
,
toy_ech_2018_income
,
toy_ech_2018
This function allows you to calculate the years of schooling
years_of_schooling( data = ech::toy_ech_2018, e193 = "e193", e51_2 = "e51_2", e51_3 = "e51_3", e51_4 = "e51_4", e51_5 = "e51_5", e51_6 = "e51_6", e51_7 = "e51_7", e51_7_1 = "e51_7_1", e51_8 = "e51_8", e51_9 = "e51_9", e51_10 = "e51_10", e51_11 = "e51_11", max_years = 22 )
years_of_schooling( data = ech::toy_ech_2018, e193 = "e193", e51_2 = "e51_2", e51_3 = "e51_3", e51_4 = "e51_4", e51_5 = "e51_5", e51_6 = "e51_6", e51_7 = "e51_7", e51_7_1 = "e51_7_1", e51_8 = "e51_8", e51_9 = "e51_9", e51_10 = "e51_10", e51_11 = "e51_11", max_years = 22 )
data |
data.frame |
e193 |
Variable name of attendance school |
e51_2 |
Variable name of years passed in primary |
e51_3 |
Variable name of years passed in special primary |
e51_4 |
Variable name of years passed in lower secondary |
e51_5 |
Variable name of years passed in upper secondary |
e51_6 |
Variable name of years passed in bachillerato tecnologico |
e51_7 |
Variable name of years passed in technical education |
e51_7_1 |
Variable name of technical education requirements |
e51_8 |
Variable name of years passed in magisterio/profesorado |
e51_9 |
Variable name of years passed in university or similar |
e51_10 |
Variable name of years passed in tertiary (non-university) |
e51_11 |
Variable name of years passed in postgrade |
max_years |
Maximum years of schooling |
Disclaimer: This script is not an official INE product. Aviso: El script no es un producto oficial de INE.
data.frame
Other education:
enrolled_school()
,
level_completion()
,
level_education()
,
organize_educ()
toy_ech_2018 <- years_of_schooling(data = ech::toy_ech_2018)
toy_ech_2018 <- years_of_schooling(data = ech::toy_ech_2018)